摘要

区块链概念最早于2008年提出,它是在已有技术上进行的独创性的组合创新,其核心技术包括P2P网络技术、非对称加密、共识机制、智能合约等。区块链技术特别适用于具备多方协作、节点共信、信用透明等特征的场景,天然具有降低信任成本、实现数据主权、提升运行效率等优势。...

最后,区块链的共识机制可以确保人工智能处于控制之下。通过人工智能执行任务的公共记录(必须由多个区块链节点进行验证),我们可以确保人工智能的运行不会超出界限。

(6)更短的AI训练时间

在使用区块链技术保障训练数据的真实可靠性的前提之下,可以通过区块链的分布式数据存储的方式将一台人工智能的深度学习训练时间大幅度的减少。例如一个人工智能的训练可以采用模型并行或者数据并行的方式,将单个的模型或者数据分布在不同的机器之上,从而减少训练时间。人工智能也可以在同步数据并行中删除同步约束限制,而采用异步并行模式——人工智能在每一步的信息处理中不必等待数据的相互确认,可以直接进行下一步的操作,从而进一步减少人工智能的深度学习训练时间。

(7)开放公平性

区块链提供的核心价值是“去信任中介化”。如果想要创建一个自组织和自我调节的人工智能网络——那么分布式记账技术是最好的途径。谷歌、腾讯、IBM、Facebook和其他大型科技公司已经彻底改变了分布式计算——将计算任务分散在多台虚拟机之间,以实现高效的可伸缩任务处理。但是他们的布式处理工具仍然是非常集中的,并且专注于由中心化的控制器统一调度特定任务,以实现非常特定的目标。

而基于区块链技术的智能合约将使“去信任中介”的网络得以实现,在这种可信网络中,两个人工智能系统可以安全可靠地进行交互,而无需任何中心化的中介。区块链还可为人工智能提供声誉系统,这样每个人工智能都可以在选择与其他人工智能进行交易之前检查其声誉。另外,区块链的无中介、高透明度将鼓励这些人工智能开发人员共享他们的数据和他们的产品,而不必担心出现某些偏袒竞争对手或窃取其知识产权的情况,并确保所有相关方为他们的工作获得适当的报酬。

2、“区块链+AI”面临的挑战

“区块链+AI”的面临的问题主要包括两方面:一方面是AI和区块链自身的缺点,在结合后仍无法有效解决;另一方面是AI和区块链结合过程中可能造成原有优势被破坏。例如:

(1)政策性风险

区块链目前部分的衍生应用在世界各地存在着一定的政策风险——例如未来是否采用区块链技术伴生的通证来激励人工智能开发或节点管理,但无论是在经济上还是在政策上如何定义通证仍有很大的不确定性。

(2)技术融合的不确定性

作为两个前沿的新兴技术,且都处于尚未完全成熟的阶段。无论是从当前区块链的技术指标,还是从人工智能的实际落地性来讲,距离两者真正的结合并实现落地,需要面对的不确定性因素仍然存在。目前区块链的主要问题为扩容、隐私、和计算能力,主流的公有链难以支撑人工智能的链上实现。

(3)大规模的社会应用面临挑战

数据共享威胁大型企业利益。通过弱化数据的中心化,降低了大型企业相对小公司的竞争优势。如果任何人都可以访问这些数据集和计算,那么任何人都有机会与世界上最大的公司竞争。从技术领域中去除这些障碍将会改善社会,但共享市场的尝试可能会让大公司感到不安。如果任何人都有能力在世界上制造出最好的人工智能,那么市场将与许多正在争夺一部分市场的初创企业和小企业共同分享。之前使用用户数据来制定广告或业务策略的公司和政府组织将再次被迫以较不直接的方式获取其数据。因此,大公司可能会反对数据去中心化,并可能游说维持AI模型开发方面集中式数据集的现状。

(4)不可控性

当使用了“一旦运行不可停止”的智能合约时,如果合约代码存在漏洞被黑客利用,黑客将通过智能合约漏洞牟利,因在区块链上运行的事务和交易不可撤销,可能会给企业和个人造成不可挽回的损失。

三、AI与区块链结合的应用场景

结合两者技术优势,通过AI让区块链更智能,区块链让AI更“自主”,更可信。目前对于AI和区块链的结合应用,市场上已经涌现出很多相关项目和理论创新,描述了不同场景下结合,比如:

(1)区块链+AI在医疗方面进行结合

相关的结合领域有医疗数据加密和医疗计算分析。关于医疗数据方面,据统计,大部分的医生会直接将病人的病情、个人信息等信息发给同事,这涉及侵犯病人隐私的问题。应用区块链的非对称加密和授权等技术,对关键信息进行加密,只有经过数据拥有者授权才可访问该数据,将大大的提高医疗数据的隐私性。关于医疗计算分析方面,AI在医疗机构提供数据错误率小于2%,利用区块链的技术,可以对于医疗数据进行信息交换,相比传统AI,数据可更好地进行共享。谷歌旗下DeepMindHealth正在开发区块链医疗数据审计系统,利用“区块链+AI”技术让医院、NHS、病人自身都能实时跟踪其个人健康数据。

(2)区块链+AI在数据市场进行结合

利用区块链集合群体的力量,进行数据上的共享、AI模型的训练等。AI的发展离不开庞大的数据集,区块链可以利用数据分类帐进行高质量数据的购买销售,当收集了大量的、多样化的数据样本后,可用于训练AI模型,这些数据及AI模型将会解决信任的数据孤岛问题,使得人工智能机器人可以进行共享学习,自我成长,产出高质量的计算机识别,语音识别和其他数据密集型应用。目前SingularityNet、DeepBrainChain、Bottos、OceanProtocol、Indorse、ARPAChain等项目涉及该领域。

(3)区块链+AI在金融领域进行结合

相关的结合领域有市场情绪分析、去中介交易商经纪人(IDB)和检测金融欺诈行为等。关于市场情绪分析及去IDB方面,利用AI进行深度学习和时序分析,再结合区块链技术保护下的个人数据相整合,为个人提供更精准的交易服务。具体来说,就是从用户面板上进行大数据采集及处理,通过人工智能分析用户情绪数据,对市场波动进行预算,最后自动化下单。利用机器人取代人工,提升效率,降低了IDB佣金。在检测金融欺诈行为方面,使用交易机器人,高频加密交易,弱中心化减少人为操控的可能性,降低金融欺诈风险,此外,AI监控加密市场,让恶意攻击变得更难。目前有Autonio、Aigang、Numeraire、Endor等项目涉及该领域。

(4)区块链+AI在云计算方面进行结合

当前AI云计算方面面临计算资源昂贵、训练时间长、训练数据多、开发去中心应用困难等问题,结合区块链技术后能较好地解决以上问题。把区块链中挖矿及电力消耗过程中过剩的资源转换为AI云算力,资源上进行整合,降低计算成本。目前有NebulaAI项目涉及该领域。

(5)区块链+AI在物联网方面进行延展

首先,区块链技术可以帮助解决“如何证明自己是自己”的问题,用户可通过区块链+AI技术完成生物身份识别和身份认证,将个人身份与物联网联系在一起。其次,解决了更新的问题,所有物联网设备在区块链+AI的加持下,数据共享,设备可智能化更新。具体的垂直应用包括:应用在工业制造上,制造生产的设备在区块链中传递信息,更智能化地成长,提高效率、增加产能;应用在交通上,更好地铺开无人驾驶应用,解放人们的时间,智能化管理交通,有利于减少交通堵塞、交通事故的发生;应用在监控等公共基础设备上,身份认证能快速的识别出罪犯,有利于维护社会稳定。目前有智行者、美图等项目涉及该领域。

区块链技术论文例9

一、导言

伴随着比特币的发展,作为根基的区块链技术也因其安全、便捷的特性也逐渐得到了银行与金融业的关注。人类社会不断进步与发展,但我们如今依然沿袭着数百年前诞生的金融交易体系,而其弊端正日益暴露。代替现金流通的有价证券的票据近年来屡次出现丢失的现象,运营着世界级的金融电文网络SWIFT CODE也多次遭受黑客袭击造成巨大损失。尤其是现阶段“一带一路”背景下,我国金融体系将要面临跨国结算、金融监管等难题,传统的技术已经无法满足现阶段和未来的需要,而区块链技术的应用可以在很大程度上保障资金安全、信息不可更改。区块链技术在金融领域的应用也逐渐走向成熟,纳斯达克在2015年首次使用了基于区块链技术的Nasdaq LINQ交易平台,提高私人股权交易的效率;Visa也开始开发一个基于该技术的App,以彻底变革汽车购买流程。毫无疑问,未来区块链技术将在金融交易领域发挥巨大的作用。因此对区块链技术在金融交易领域的研究是非常必要的。本文将从“一带一路”下的金融需求角度出发,从国际支付结算、证券交易、银行征信、金融监管四个方面进行分析论述区块链技术在金融交易领域的应用,并对区块链技术在我国一带一路中的应用提出政策建议。

二、应用领域分析

“一带一路”战略是中国社会经济发展和对外开放的重大战略,在这一战略中,金融不仅要起到先行的作用,更要在各领域起到支撑作用。金融在“一带一路”中的应用包括政策性银行信贷支持、跨国交易与结算、跨国投资和贸易投资保险等领域。我们选取了国际支付结算、证券交易、银行征信、金融监管四个重要方面,探讨区块链技术的应用。

中国教育信息订阅号二维码
中国教育信息微信服务号