摘要

卡方分布的自由度为n-k。卡方分布的自由度取决于总体参数的个数,一般来说,自由度等于总体参数的个数减去一。例如,如果总体有三个参数,那么卡方分布的自由度就是2。卡方分布的自由度怎么确定一个式子中独立变量的个数称为这个式子的“自由度”,确定一个式子自由度的方法是:若式子包含有n个独立的随机变量,和由它们所构成的k个样本统计量,则这个表达式的自由度为n-k。比如中包含ξ1,ξ2,…,ξn这n个独立的随...

卡方分布的自由度为n-k。卡方分布的自由度取决于总体参数的个数,一般来说,自由度等于总体参数的个数减去一。例如,如果总体有三个参数,那么卡方分布的自由度就是2。

卡方分布的自由度怎么确定

一个式子中独立变量的个数称为这个式子的“自由度”,确定一个式子自由度的方法是:若式子包含有n个独立的随机变量,和由它们所构成的k个样本统计量,则这个表达式的自由度为n-k。比如中包含ξ1,ξ2,…,ξn这n个独立的随机变量,同时还有它们的平均数ξ这一统计量,因此自由度为n-1。

证明:设k1ξ1+k2ξ2+…+knξn=0.这是一个含有n个相对独立变量的式子。则其中任意一个ξi=-1/ki[k1ξ1+k2ξ2+…+k(i-1)ξ(i-1)+k(i+1)ξ(i+1)+…+knξn],(1≤i≤n)。显然ξi由另外n-1个变量决定,所以自由度为n-1。

卡方分布是由正态分布构造而成的一个新的分布,对于任意正整数x,卡方分布是一个随机变量X的机率分布。

卡方分布是指什么

卡方分布(英语:chi-square distribution[2],χ²-distribution,或写作χ²分布)是概率论与统计学中常用的一种概率分布。k个独立的标准正态分布变量的平方和服从自由度为k的卡方分布。

卡方分布是一种特殊的伽玛分布,是统计推断中应用最为广泛的概率分布之一,例如假设检验和置信区间的计算。

卡方分布在共同使用卡方检验用于拟合优度的观测分布为理论之一,独立的分类的两个标准定性数据,并在用于人口区间估计标准偏差a的来自样本标准差的正态分布。许多其他统计检验也使用这种分布,例如Friedman 的按秩方差分析。

由卡方分布延伸出来皮尔逊卡方检验常用于:

1、样本某性质的比例分布与总体理论分布的拟合优度(例如某行政机关男女比是否符合该机关所在城镇的男女比);

2、同一总体的两个随机变量是否独立(例如人的身高与交通违规的关联性);

3、二或多个总体同一属性的同素性检验(意大利面店和寿司店的营业额有没有差距)。(详见皮尔逊卡方检验)

华人教育信息订阅号二维码